
An Efficient Hardware Implementation of HON4D
Feature Extraction for Real-time Action Recognition

Chia-Jung Hsu, Jia-Lin Chen and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering

National Taiwan University, Taipei, Taiwan

{angela0130, jocelyn, lgchen}@video.ee.ntu.edu.tw

Abstract—Human activity recognition has been an important
area of computer vision research. In this paper, we present
real-time hardware implementation for action recognition with
HON4D features, which outperform the methods relying on skele-
ton detectors. Our proposed circuit adopts sliding histogram, and
several approximate techniques to reduce computation and speed
up feature extraction. Furthermore, using sliding histogram
allows continuous classification without video segmentation in
advance.

I. INTRODUCTION

Recognizing human activity is one of the important areas in
computer vision. Its applications include surveillance, human activity
analysis, and various system. Activity recognition algorithms from
RGB video sequences have developed since 1980s. Recently, depth
sensors have become ubiquitous. Compared with RGB videos, depth
sequences provide more discriminative shape information which will
benefit in object detection, and activity recognition.

In real surveillance system, high-speed activity recognition is
required. The histogram of oriented 4D surface normals (HON4D) is
a novel activity descriptor for depth sequences. Moreover, HON4D
uses holistic methods, and still outperforms methods relying on
skeleton detector such as [2]. In this paper, we present a pipelined
architecture for HON4D feature extraction. Using several approxi-
mation techniques and sliding histogram design, our proposed circuit
can be implemented with lower hardware costs while performing high
throughput.

II. HISTOGRAM OF ORIENTED 4D SURFACE NORMALS

This session gives an overview of the HON4D [1] feature extrac-
tion. HON4D describes the depth sequences using histogram captur-
ing the distribution of the surface normal orientation in 4 dimensional
space of time, depth, and spatial coordinates. The computation units
of HON4D are spatial-temporal units, and then features in each
spatial-temporal cells are concatenated as representation of the depth
sequences. Figure 1 summarizes the steps for computing HON4D.

A. The 4D Surface Normal

In the context of depth sequences, each point satisfy
F (x, y, t, z) = f(x, y, t) − z = 0. Therefore, the extended
surface normal is computed as

n = ∇F = (
∂f

∂x
,
∂f

∂y
,
∂f

∂t
,−1)T . (1)

Since the shape of the 4D surface F is represented by the orientation
of the normal, we need to divide n by the magnitude of gradient
||(fx, fy, fz,−1)||2 to obtain a normalized n̂.

Fig. 1. The various steps for computing HON4D.

B. Histogram of 4D Normals
Quantization of the 4D space is required in order to capture

the distribution of 4D normal orientation. [1] uses polychorons as
projectors since a regular polychoron divides the 4D space uniformly
with its vertices. In polychorons, the vertices of a 600-cell centered
at the origin in the 4D space are given as:

• 8 vertices obtained by permutations of (0, 0, 0, 1).
• 16 vertices obtained by permutations of (1/2, 1/2, 1/2, 1/2).
• 96 vertices obtained by even permutations of 1/2(, 1, 1/ϕ, 0),

where 1/ϕ is the edge length of the 600-cell, and is set to a
constant called the golden ratio 2/(1 +

√
5).

Given the set of 120 projects P = {pi}, and the set of unit
normals N = {n̂j} within spatial-temporal cells, we can compute
the component of each normal in each direction by an inner product
with the corresponding projector

c(n̂j , pi) = max(0, n̂j
T pi). (2)

C. Normalization Computation
HON4D features are accumulation of unit surface normals within

spatio-temporal cells, and normalized by the sum across all projects
so that the final distribution sums to one. The normalized result can
be written as

Pr(pi|N) =

∑
j∈N

c(n̂j , pi)
∑

pv∈P

∑
j∈N

c(n̂j , pi)
(3)

Hence, a 120 dimensional HON4D descriptor describes one
spatial-temporal cell. The depth sequences are divided into w×h× t
cells, and each cell is represented by a separate HON4D feature. The
final descriptors is a concatenation of the HON4Ds obtained from all
cells.

III. HARDWARE IMPLEMENTATION

The steps for the HON4D feature extraction include computation
of normalized n̂, histogram of projection into polychorons, and
normalization. It is obvious that the calculation of HON4D feature
extraction is complex and unsuitable for hardware implementation.
Therefore, we propose sliding histogram and adopt approximate
techniques to reduce complexity and speed up feature extraction.

2015 IEEE International Symposium on Consumer Electronics (ISCE)

978-1-4673-7365-4/15/$31.00 ©2015 IEEE

Fig. 2. The sliding histogram. Fig. 3. Dataflow of HON4D.

A. Architecture Design
There are two major challenges in designing a real-time action

recognition system with HON4D feature. Firstly, actions are con-
tinuous. One video sequence may contain multiple actions, and it’s
challenging to correctly tell the boundaries between two actions.
Therefore, we propose sliding window technique to efficiently cal-
culate histogram features for each sptaio-temporal cell as shown
in figure 2. As a result, we can recognize different actions at any
time without carefully segmentation of different actions in advance.
Histogram Ht is HON4Ds between current frame Ft and previous
frame Ft−Δh, where Δh is the length of sliding window. As time
progresses, histogram Ht+1 can be updated as

Ht+1 = Ht − ft−Δh + ft+1 (4)

where ft and ft+1 represent the HON4D features of frame Ft and
Ft+1 respectively. Using sliding histogram can reduce duplicate
computation, and classify actions without video segmentation.

Secondly, bandwidth and memory are issues when loading entire
frames to compute ft. Since HON4D features between cells are
computationally independent, data flow can be modified as figure 3.
By loading each cell at once, local memory can be reduced.

B. The 4D Surface Normal
In order to obtain the normalized 4D surface normals n̂, inverse

square root operation is required. In hardware, division and square
root are both computationally complex operations. Therefore, we use
fast square root reduce these operations. Given the magnitude x, we
want to approximate yapproximate = 1/

√
x. Firstly, magic number

(0x5f3759df) is adopted to generate initial values.

yIEEE754 = (xIEEE754 >> 1)−magic number (5)

where xIEEE754 and yIEEE754 are the IEEE754 presentation of
values x and y, respectively. Then, yIEEE754 is rewritten as the
form of decimal representation, yDecimal. Applying NewtonRaphson
method with the initial value of yDecimal, we can derive

yapproximate =
yDecimal ∗ (3− y2

Decimal)

2
(6)

In our implementation, using approximate initial values as approx-
imation of inverse square root maintains performance while saving
computation. As a result, only part of fast inverse square root is
implemented in our system. Figure 4 shows the architecture of fast
inverse square root in our implementation, where DIC is the unit
used to convert decimal representation to IEEE754 representation,
IDC is the unit used to convert IEEE754 representation to decimal
representation.

C. Implementation Details
Since projectors {pi} are predefined, we can use power of 2 to

approximate vertices. Moreover, the magnitude of HON4D for spatio-
temporal cells is bounded given the length of sliding window Hence,
lookup table can be constructed to avoid complex operations.

Fig. 4. Architecture of a approximate fast inverse square root.

Fig. 5. Experiment results of accuracy with different sliding-window length.

IV. EXPERIMENTAL RESULTS

We experimented on the proposed circuit using MSRAction3D [4]
dataset. The MSRAction 3D contains 20 actions performed by 10
subjects facing a depth sensor, Kinect. The 20 actions covers various
movements related to arms, legs, and torso. Therefore, this dataset
is challenging as many actions appear similar. In order to determine
size of sliding window, we create periodic depth sequences by
circulating each depth sequence. We follow the experiment setup as
in [5] (first five actors for training, and the rest for testing. The
experiment result is shown in figure5. When Δh is 60 frames, we
obtain the accuracy 79.46%, which is close to the baseline 87.87%.

We use Verilog hardware description language to implement
the VLSI architecture, and SYNOPSYS Design Vision to synthe-
size our design with Taiwan Semiconductor Manufacturing Compa-
nys(TSMC) 0.13-m cell library. The synthesis result shows that our
design contains 846k gate counts and operates at a clock rate of 50
MHz.

V. CONCLUSION

In this paper, we proposed a low-cost real-time hardware imple-
mentation for HON4D feature extraction. By using sliding histogram
technique, our system can classify actions as depth sequences stream
in. Furthermore, several approximation methods replace complex
operations while maintaining the performance. The proposed circuit
can be integrated with other intelligent system, such as surveillance
systems.

REFERENCES

[1] Oreifej, Omar, and Zicheng Liu. ”Hon4d: Histogram of oriented 4d
normals for activity recognition from depth sequences.” Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2013.

[2] J. Wang, Z. Liu, Y. Wu, , and J. Yuan. Mining actionlet ensemble for
action recognition with depth cameras. In CVPR, 2012.

[3] H. S. M. Coxeter. Regular polytopes. In 3rd. ed., Dover Publications.ISBN
0-486-61480-8, 1973.

[4] W. Li, Z. Zhang, and Z. Liu. Action Recognition based on A Bag of 3D
Points. In CVPR Workshop, 2010.

[5] J. Wang, Z. Liu, J. Chorowski, Z. Chen, , and Y. Wu. Robust 3d action
recognition with random occupancy patterns. In ECCV, 2012.

2015 IEEE International Symposium on Consumer Electronics (ISCE)

978-1-4673-7365-4/15/$31.00 ©2015 IEEE

